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Abstract-A new method for recovering epileptic EEG and

deglutition EEG’s nonnoise trajectory and distinguishing these

two waveforms is presented. The main aim of this paper is to

introduce the theory and establish math model of a simple

recovering EEG’s nonnoise trajectory. This method is finally

used to experiments. Our results prove that chaotic dynamics

does exist in EEG and signal-noise of EEG marked improves.

Furthermore, it is also successful to recover structural

characteristic of strange attractor destroyed by noise. The

paper obtains the real chaotic trajectory of EEG with which it

can calculate dipole of EEG. According to the different

parameters of dipole, a method of distinguishing epileptic EEG

and deglutition EEG using the measurement of nonlinear

dynamics is obtained.
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.INTRODUCTION

Epilepsy is a sort of familiar chaotic syndrome, which

clinic characteristic is epileptic outbreak. Traditional

diagnose of epilepsy mainly depends on inquiring clinic

illness history and checking-up electroencephalogram.

Though people have rather deeply understand to brain

microstructure and enginery from neuroanatomy and

neurophysiology, cerebral high-ranking activity is still

difficult to explain, because cerebra are the most

complicated apparatus in body. It is very difficult to

diagnose and forecast epilepsy.

People find that there is usually a sort of high-amplitude

epileptiform  discharge  in EEG of typical  epileptic  in

*This study is supported by China Natural Science

Foundation [NO.59937160].

experiment. This high-amplitude wave can be emitted by

epileptic focus, so searching and analyzing epileptiform

discharge are likely to become a kind of groping task,

checking epilepsy and determining epileptic focus.

However, people also find that the high-amplitude

epileptiform wave resembles with deglutition EEG of

normal people. There aren’t simple distinguishing methods

to them in time series. This brings difficulty for diagnosing

epilepsy.

Along with the increasing theoretical understanding of

complex dynamical system, people have recognized that

cerebral activity is entirely nonlinear which is a sort of

broad band signal[1]. Some foreign scholars have brought

chaotic theory in study of cerebral activity from 1980’s.

They consider that normal EEG is chaotic state[2]. When

cerebra occurs epileptic pathological changes, part nerve

cells present exorbitant repetitive discharge and occur

epileptic wave, which can reduce cerebral chaotic state[3]. It

is very significant to distinguish epileptic EEG and

deglutition EEG with nonlinear dynamics theory.

However, time series of epileptic EEG and deglutition

EEG contain obvious noise that usually hides dynamics

information of cerebra l activity. It is necessary for irregular

EEG to reduce noise in order to get rid of disadvantage

effect of noise. Furthermore, confirmed dynamics

mechanism of irregular discharge is obtained. The main aim

of paper is to seek the method that can reduce EEG noise

and recover EEG dynamics trajectory.

. PRINCIPLE AND METHOD

A. Establish Math Model

  Base of chaotic time series noise-reduction is the
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reconstruction theory of phase space. Let us assume that

chaotic time series studied is x(t) then Xi=(x(t),x(t+

), ,x(t+(d-1) )T can denote a point in the phase space

in which d represents phase space’s dimension and 

represents delay time. Dynamics system of chaotic attractor

satisfies projection relation:

f:    Rd       Rd

In order to express clearly, xp is looked as a reference

point in time series, x1 ,x2 , ,xn. xp , with its delay points and

“advance” points(xp+1, ,xp+m), consists of Xp xp,xp

1, ,xp m
T which is a point in (m+1)-dimensional phase

space. X1,X2,X3, ,XN are points of Xp’s neighborhood M.

The data xp can be obtained by taking a linear average of its

delay points and “advance” points in a small local

neighborhood. The relation is [4]:

(1)

In order to obtain the optimal values the coefficients, ai

i=1,2, m and b the paper uses the least squares fits

method. X1 ,X2 ,X3 , ,XN of Xp’s neighborhood also satisfy

extremal condition in a small local neighborhood :

                                                                           

                                                        

  

  

2

Note that if one tries to fit the optimal value for a0 from

the least squares, one would get the trivial solution ai= i0

and b=0. Thus, a0 has to be fixed. Usually choose a0 =0.5 or

0.7. Apart from a0,  there remain essentially two parameters

that can be varied in our procedure. The first is the order m

of the local linear model (eq. (1)), the proper value of m

depends on the number of frequencies involved. The second

is the size N of the neighborhoods. Larger neighborhoods

give more stable fits, but if they are chosen too large the

locality required for the linear approximation is violated.

After obtaining coefficients, it can calculate xp
’ point,

which is closer to real chaotic trajectory yp than xp. Do it

continually to every point in time series, then we can obtain

a clearer chaotic trajectory than original one, x1
’,x2

’, ,xn
’.

After finishing a time noise reduction, the procedure is

repeated several times (with xn replaced each time by the

last xn
’) until the result seems optimal.

B. Physical Signification of Math Model

  Let us assume that that time series xp  measured is

dynamics system that comes from noise-free yp. Bowen

proves that there must be an only accurate trajectory beside

inaccurate noise trajectory in dynamics system, what is

well-known Shadowing Theorem of dynamics system[5].

                                

                           M

                                      

           

             

Fig.1  Sketch of nonlinear chaotic noise-reduction

 In fig.1, Lx, consisted by xp xp 1 and xp 2  ,denotes a

measured noise trajectory. According to Shadowing

Theorem, there is a noise-free trajectory Ly , consisted by

yp yp 1 and yp 2, beside Lx. There are also other else noise

trajectories, such as xi xi+1 xi+2 xj xj+1 xj+2 xk xk+1

xk+2 , in neighborhood M. All these noise trajectories

satisfy the eq.(1). Because Lx affected by noise usually

doesn’t overlap with Ly , but lumps with the other else

                               
  xi    xi+1     xi+2

          y p   yp+1   yp+2

xp  xp+1  xp+2

             xj    xj+1   xj+2

     xk    xk+1   xk+2
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trajectories. An optimal method of approaching real noise-

free trajectory is to compute minimizes distance square to

each noise trajectory. This is the least square fit, such as eq.

(2).

. RESULT

A. EEG Data Collection

  In this paper, it collects EEG signals by 32-channel

electroencephalogram instrument EE2514 of Japan NEC

Medical System Ltd. . The position of electrodes is the

same to the position marks of MRI, and it use 32-channel

electrodes. We collect the sleep EEG of epileptic with high-

amplitude discharge in fig.2 and deglutition EEG of normal

people in fig.3.

Fig.2   Epileptic EEG wave of patient

Fig.3  Deglutition EEG of normal people

B. Handle Experiment Data

Respectively take a length wave with 400 points form

epileptic EEG and deglutition EEG measured, and make a

backtracking projection map to measuring waves of the NO.

11 electrode. Results are shown in fig.4 and gfig.5.

                                     

Fig.4  Chaotic trajectory of epileptic EEG with noise                

Fig.5  Chaotic trajectory of deglutition EEG with noise

It can be seen that data series have marked noise interfere,

structural characters of strong attractor isn’t clear and real

chaotic trajectories are hided by noise from fig.4 and fig.5.

So, we should not distinguish between epileptic EEG and

deglutition EEG. Only deal with these data with nonlinear

noise-reduction method. In our case, the paper chooses

parameter values a0=0.5, m=3, N=10. After the procedure is

repeated 30 times, results are shown in fig.6 and fig.7.

 Through comparing fig.4 with fig.6 and fig.5 with fig.7,

it is easily found that signal-to-noise of EEG measured

marked increases and structural characters of projection

function are clearly revealed. From fig.6 and fig.7, it is seen

that real chaotic trajectory of epileptic EEG differs from

one of deglutition EEG. We can calculate dipole of EEG
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with the real chaotic trajectory of EEG. According to the

different parameters of dipole, a method of distinguishing

epileptic EEG and deglutition EEG using the measurement

of nonlinear dynamics is obtained. Furthermore, abnormally

discharging field of cerebra and diagnose epileptic focus of

patient be obtained according to the different parameters of

dipole [6].

                                      

Fig.6  Denoised chaotic trajectory of  epileptic EEG         

Fig.7  Denoised chaotic trajectory of deglutition EEG

. DISCUSSION AND CONCLUSION

The data of epileptic EEG and deglutition EEG measured

are usually irregular and include marked noise, what brings

a lot of difficulties to distinguish EEG signal in experiment.

Some people try to obtain noise-free wave by improving

experimental conditions or using linear noise-reduction

method, for example average piling up or frequency chart

analysis [7], but results are not good.

With the method mentioned in paper, it only need simply

deal with EEG signal measured, and then obtains the real

chaotic trajectory of EEG with which the paper calculates

dipole of EEG. According to the different parameters of

dipole, a method of distinguishing epileptic EEG and

deglutition EEG using the measurement of nonlinear

dynamics is obtained. This method maybe also prove a new

tool of analyzing EEG signal and a new clue of picking-up

EEG and diagnosing cerebral illness.
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